If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9c^2+24c-20=0
a = 9; b = 24; c = -20;
Δ = b2-4ac
Δ = 242-4·9·(-20)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-36}{2*9}=\frac{-60}{18} =-3+1/3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+36}{2*9}=\frac{12}{18} =2/3 $
| (8x-30)=(5x-9) | | -1/4+w=5/8 | | 6(2x-5=2(5x+3) | | 8x-6=8x+5 | | 5(2x-1)-3(3x-2)=9 | | d=602 | | −90=6(n−8) | | 9(w-3)=4w-12 | | 2x+15÷3=5+(2x-1x) | | 2x+10=13- | | 2x+10=13-x | | 2(x-5)=7x-1 | | 5x-4x=-18 | | 4(x+3)-2(x+1)+3(x+2)=36 | | 3(x+3)+5=3x+2 | | 3(x+3)+5=3x2 | | -7.3x=49.6 | | 7x+3=-6+4x+24 | | -4r+32=-45 | | 6+10=-2(5x-8) | | 2(x+2)+4(x+1)=26 | | g/40-5/8=1/8 | | -4r+2=-45 | | -3(5y-10)-y=-2(y-3) | | 43=17-2z | | 5+a/3=-2 | | 40=n/98 | | p+3=-8 | | 108π=6πj. | | 1.16g-8=0.7 | | 6x-2x-1=4x+8-6x-3 | | 37x+6=6 |